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The tomographic histories approach is presented. As an inverse problem, we recover
in an operational way the effective topology of the extended configuration space of a
system. This means that from a series of experiments we get a set of points corresponding
to events. The difference between effective and actual topology is drawn. We deduce
the topology of the extended configuration space of a non-relativistic system, using
certain concepts from the consistent histories approach to Quantum Mechanics, such as
the notion of a record. A few remarks about the case of a relativistic system, preparing
the ground for a forthcoming paper sequel to this, are made in the end.
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quantum gravity.

1. INTRODUCTION WITH MOTIVATIONAL REMARKS

In the standard formulation of relativity theory, the spacetime topology is a
priori fixed by the theorist to that of a continuous manifold; hence, it is not an
observable entity. Only the metric structure is traditionally supposed to be dynam-
ically variable. With the exception of Wheeler’s celebrated, but largely heuristic,
spacetime foam scenario (Wheeler, 1964), there is no well developed theory in
which the spacetime topology can be regarded as a dynamical variable proper, with
quantum traits built into the theory from the very start. However, one may try to
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consider idealized situations where certain topological features are represented as
quantum variables that can in principle be observed and measured (Breslav et al.,
1999). Even in General Relativity (GR), where no variable quantity is supposed
to be quantum—i.e., subject to coherent quantum superpositions and associated
uncertainty in its determinations, we need histories (e.g., material particles’ causal
geodesic trajectories) to actually define the topology of spacetime. This is be-
cause the concept of neighborhood turns out to be something which someone (:an
observer), located at some point in spacetime, deduces for regions that belong
to her causal past. Similarly, the concept of distance can be established only if
information (:causal signals, or actual travelling material particles) is (causally)
transmitted from one point to another. All in all, the causal nexus of the world
determines both its topological and metric structures.

On the other hand, an interesting feature of quantum mechanics is that we
may be able to make and verify statements about topology from a single-time case,
as long as we are allowed to repeat experiments (and in principle we are allowed
to do that indefinitely, if only in a theoretical, idealized, ‘gedanken’/theoretical
fashion) in order to get the relative frequencies. In the classical (i.e., non-quantum
mechanical) case, one-time measurements do not give any information about
global properties, such as the background topology.

Having said that, a remarkable consequence of quantum mechanics is that the
wavefunction is a non-local entity, so that we may be in a position to deduce topo-
logical properties of the background, provided that we have enough repetitions of
the experiment to reconstruct the relative frequencies. Thus, instead of saying that
the wavefunction is a square integrable function on a topological space and use this
to deduce probabilities about experimental outcomes (:events), we hereby propose
to do the converse. We start from probabilities and the continuity assumption for
events, and from this information we derive the structure of the topological space
in which these events are supposed to happen. A word of caution is due here: the
continuity assumption is normally taken to presuppose a topology—for how else
can one talk about a continuous wavefunction? Well, and here is the crux of the
inverse scenario: our assumption is that the wavefunction must be continuous with
respect to the topology to be deduced from the relative frequencies of events. In
other words, the (continuity of the) wavefuction is born with the topology being
deduced.

In what follows, we do the same for the 4-dimensional case and recover
‘spacetime’. We should point out that no matter that we talk about space-time,
we are still in the non-relativistic regime. We just speak of space points labelled
by their ‘absolute’, Galilean time of occurrence. The relativistic case will be
considered in a forthcoming paper (Raptis et al.).

One could say that histories are still needed to define global properties, such
as the topology; however, here we maintain instead that they are needed in order
to extract the form of the wavefunction. Of course, prima facie one can counter
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our arguments by holding that the assumption about (complete) knowledge of
the wavefunction immediately leads to EPR-type of paradoxes. Our retort is that
EPR-phenomena do not arise in our setting, while causality is rescued by the fact
that we need classical communication to recover the full (:complete) state, as for
example in various (quantum) teleportation scenarios—see, e.g., Aharonov and
Vaidman (2000).

Let us outline the contents of the present paper. In the first part we introduce
the consistent histories approach whereby we are given a configuration space for
the system, its full Hamiltonian (including interactions), as well as the initial con-
ditions (generally speaking, ‘exosystemic’ parameters of the problem traditionally
supposed to be determined by an experimenter external to the experimentee—the
physical system under experimental focus), and from these we calculate the prob-
abilities for histories to occur. In our inverse—alias, ‘tomographic’—approach,
we are given the sets of observed histories together with their relative frequen-
cies, and from these we reconstruct (some of) the parameters of the problem,
with no allusion to external/internal systemic distinctions, as befits the histories
approach. Then, certain issues about topology and the character of various possi-
ble indeterminacies of the derived topology that are involved in our approach are
highlighted.

The main part of the paper follows, where we present what we are able
to recover and how we do that. In this paper we specifically develop the non-
relativistic case and focus on what can be said about topology using the set of
histories alone, and also what needs some further measurements in order to be
‘sharply’ determined. Finally, we illustrate all this by virtue of two toy-models.
The first is our variant of the usual double-slit experiment, both when the particle is
detected at the slit, and when it is not. The second is an example of an environment
involving a ‘bath of sensors’.

But before we delve into the paper, we feel that the new term ‘tomography’
ought to be further explained; otherwise, there is no reason to have it only for the
sake of fancy neologisms and lexiplacy. We believe that its use can be justified
on the following semantic grounds: experiments and their records may be thought
of as ‘cuts’ (:‘τoµές in Greek) incurred on the quantum system.1 From (the
results of) these ‘observational measurement-slices’ and their relative frequencies
of occurrence, we ‘retro-write’ (:‘redraw’, or ‘reconstruct retrodictorily’ so to
speak)—as it were, ‘after the fact’—the (spacetime) topology. Moreover, in Greek,
the verb ‘to write’ (or ‘to draw’, generically speaking) is γράφω. Hence ‘tomo-
graphy’:2 we are re(tro)sketching spacetime topology from ‘experimental cuts’
exercised on the quantum system(!) All in all, this etymological dissection of

1 Recall the Heisenberg ‘schnitts’ (German for ‘cuts’) in the standard Copenhagean quantum theory.
2 In Greek, ‘τoµo-γραφία:=‘slice-wise writing/skethching/drawing’).
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the word ‘tomography’ accords with the title of the paper: “spacetime topology
(derived, or effectively re-sketched) from ‘tomographic’, inverse histories”.

2. HISTORIES AND INVERSE HISTORIES APPROACH

The decoherent histories approach to quantum mechanics deals with the kind
of questions that may be asked about a closed system, without the assumption of
wavefunction collapse (upon measurement). It tells us, in a non-instrumentalist
way, under what conditions we may meaningfully talk about statements concern-
ing histories of our system, by using ordinary logic. This approach was mainly
developed by Gell-Mann and Hartle (1990a,b,c, 1992), Hartle (1991a,b, 1993),
and it was largely inspired by the original work of Griffiths (1984) and Omnès
(1988a,b,c, 1989, 1990, 1992).

In this section, after we briefly recall useful rudiments of the standard his-
tories scheme, we introduce its ‘converse’ theoretical scenario that interests us
presently: the inverse histories approach. Pictorially, the two schemes are related
as follows:

the
Hamiltonian

configuration
space

choice of
measurement

basis

choice of
precision

observed
frequencies

�

�

Standard histories approach

Inverse histories approach

2.1. The HPO Version of the Standard Histories Approach

The formulation of the standard histories scenario that we follow presently
is due to Isham et al. (e.g., see Isham, 1994; Isham and Linden, 1994), and it
is called HPO (History Projection Operator) approach. It consists of a space of
histories UP , which is the space of all possible histories of the closed system in
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question, and a space of decoherence functionals D. Parenthetically, the space of
histories is usually assumed to be a tensor product of copies of the standard QM
Hilbert space. Two histories are called disjoint, write α ⊥ β, if the realization of
the one excludes the other. Two disjoint histories can be combined to form a third
one γ = α ∨ β (for α ⊥ β). A complete set of histories is a set {αi} such that
αi ⊥ αj (∀αi, αj , i �= j ), and α1 ∨ α2 ∨ . . . ∨ αi . . . = 1

A decoherence functional is a complex valued function d : UP × UP −→ C

with the following properties:

(a) Hermiticity: d(α, β) = d∗(β, α)
(b) Normalization: d(1, 1) = 1
(c) Positivity: d(α, α) ≥ 0
(d) Additivity: d(α, β ⊕ γ ) = d(α, β) + d(α, γ ) for any β ⊥ γ

A complete set of histories {αi} is said to obey the DECOHERENCE condition,
i.e., d(αi, αj ) = δijp (αi) while p (αi) is interpreted as the probability for that
history to occur within the context of this complete set.

The decoherence functional encodes the initial condition as well as the evo-
lution of the system. Here we should also note that the topology of the space-time
is presupposed when we group histories into complete sets, i.e., in collections of
partitions of unity.

In standard QM, histories correspond to time ordered strings of projections
and to combination of these when they are disjoint. An important issue here is the
relation between decoherence and records. Namely, it can be shown that if a set
of histories decoheres, there exists a set of projection operators on the final time
that are perfectly correlated with these histories and vice versa.3 These projections
are called records. It is this concept that figures mainly in our approach (e.g., see
Halliwell, 1999).

To sum things up, in the standard histories approach

• The system is given, as well as its environment. The latter is represented
by prescribing initial conditions and in some cases final conditions.

• The space, its topological structure in particular, is presupposed.
• The interactions are given in terms of the decoherence functional, which

encodes the dynamical information. For the complete dynamics, the full
Hamiltonian must be known.

2.2. Tomographic Histories Approach

In our approach things are different, as we solve the inverse problem. While
in standard histories one is given the Hamiltonian, initial conditions, as well as

3 This is the case for a pure initial state, and we restrict ourselves to it.



1600 Raptis, Wallden, and Zapatrin

the space on which they are defined, and the aim is to predict probabilities for
histories, we do the opposite thing. We make repetitions to get the frequencies
for different records. Then, by making certain assumptions about these records,
namely, that they are nothing but records of events, we recover the topological
structure of the underlying configuration space. This means that from a set of
events, with no other structure presupposed (:a priori imposed from outside the
system), we end up with a causal set representing the discretized version of the
extended configuration space of the system in question.

The extended configuration space that we get will be an ‘effective’ one, and in
a sense it accounts for certain properties of the Hamiltonian, such as interactions
with other objects not controlled by the experimenter. For instance, the latter could
be some kind of ‘repulsive’ field that prohibits the system to go somewhere (:in
a region of its configuration space), which can then be recovered as a hole (:a
dynamically inaccessible region) in that space.

To compare the two approaches, let us review for a moment the standard
histories approach where the decoherence functional, as well as the space of his-
tories, are given. For these, one is assumed to be given the initial conditions, the
configuration space, and the Hamiltonian of the system in focus—i.e., generally
speaking, the parameters of the system. When we are able to perform multiple
runs of the experiment and we choose a decohering set of histories, the decoher-
ence functional yields the probability for each history to occur, which, in turn,
corresponds to the history’s relative frequency with respect to the set chosen.

Having the same Hamiltonian and the same initial conditions, we may con-
sider another decohering set of histories, not necessarily compatible with the
previous one, for which again the probabilities can be calculated. This is in broad
terms what the usual histories approach accomplishes.

We on the other hand will be tackling the inverse problem. The essence of our
approach is the following. Since we can carry out our experiment sufficiently many
times, we have access to the following two things—the set of possible histories
and the relative frequencies for each history to occur for every initial state. From
this we recover the parameters of the experiment, namely, the effective topology
of the extended configuration space.

One thing to highlight here is what corresponds to a decoherent set of his-
tories in our inverse scenario. It is one particular partition of unity of the record
space. Our freedom of choosing a particular basis in which to measure things will
in general give different decoherent sets than had we chosen a different one (:dif-
ferent basis, different decoherent sets). Note also that since we consider histories
operationalistically, we always deal with histories that are contained in a deco-
herent set, namely, the set that corresponds to the set of records that we choose to
analyze.
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In our setup we shall assume that the records capture the spatio-temporal
properties (of the system in focus). This means that the histories are coarse-grained
trajectories of the system, belonging to a space whose topological properties we
ultimately wish to deduce. We shall then claim that the whole concept of spacetime,
as a background structure, does not make sense in finer-grained situations. In this
way, all the histories are single-valued on our discretized version of ‘effective
spacetime’. One should note here that we may still have histories that have the
particle in a superposition of different position eigenstates, but only if the latter
are ‘finer’ than the degree of our coarse-graining. With the coarse-graining we
effectively identify (i.e., we group into an ‘equivalence class’ of some sort) the
points that we cannot distinguish operationally, with the resulting equivalence
class of ‘operationally indistinguishable points’ corresponding to a ‘blown up’,
‘fat point’ in our discretized version of ‘effective spacetime’.

2.3. Classical Versus Quantum Indeterminacy of Topology

In this subsection we would like to emphasize that there are two essen-
tially different kinds of indeterminacy involved in derivations of the effective
topology.

The first one is of a ‘classical’ character, that is, it comes from the lack of
our knowledge about the systems’ configuration space, as for instance when we
do not have sufficiently many repetitions of the experiment. For example, the
configuration space might appear to be a segment of a straight line, when in fact
it is a circle. This could be due to incomplete information that we gather from an
insufficiently repeated experiment, which could result to some points at the end
of the segment, that would ultimately make the configuration space a circle, not to
be detected. Another way that classical indeterminacy could arise would be when
some records are simply not accessible4 when, as a matter of fact, the interaction
of our system with the ‘record space’ is supposed to capture all the spatiotemporal
features or properties of the system. In toto, as befits the epithet ‘classical’, this
type of indeterminacy in effective topology determinations is an ‘epistemic’ one:
it reflects our ignorance, our partial experimental knowledge about and control
over the quantum system.

The second type of indeterminacy, like the one arising in Quantum Theory,
is due to a fundamental ‘quantum dichotomy’ of our experimental settings and
determinations. For instance, the topology of coordinate and momentum space
of a quantum particle may be different from each other, so that what we recover
in the end depends on what we initially choose to measure: coordinates or mo-
menta. Plainly, this reflects the fundamental quantum duality between the position

4 This is not the case in this paper. In our setup we assume that we have access to all records that are
related to detectable events.



1602 Raptis, Wallden, and Zapatrin

and momentum observables in standard QM, which in turn is a reflection of the
ontological (as opposed to epistemic) nature of quantum indeterminacy and un-
certainty. Our setup simply limits our freedom to measure anything we want to
what is produced by a decoherent set of histories, and therefore it is associated
with a projection operator on our record space. We must emphasize however that
we still have some freedom, since incompatible consistent sets have incompat-
ible records in the record space, so that our choice of what basis to measure
in the record space is still in force. This issue is addressed in more detail in
Section 3.3.

2.4. The Oerationalistic Underpinnings of Our Scenario

Our approach is essentially operationalistic. The notion of record space
is regarded as the only source of information we possess about the system we
wish to explore. The effective topology then refers to the configuration space of
the system in question. In our tomographic approach, we are given the sets of
observed histories together with their relative frequencies, from which then we
reconstruct the parameters of the problem.

We assume that some of the records may be identified with particular events,
i.e., spacetime ‘points’. Furthermore, we claim that this is the only case we may
speak of a configuration space proper. That is, if we do not have access to events
even in principle, we cannot speak about their support or their topological and
causal nexus, as, say, in the causal set scenario (causet). Then, relative frequencies
are recovered by repetition of the whole histories involved: by restarting the system
in an identical environment and letting it evolve for the same amount of time.5 In
our operationalistic (ultimately, relational-algebraic) view, the only way one can
talk about some background structure such as ‘spacetime’, is relative to something
else. More precisely, we use our data (records) to (re)construct an ‘arena’ for a
particular subsystem of the universe that we are interested in, and it is only in this
sense that we may speak of ‘spacetime’. Retrodictorily, ‘spacetime’ is where and
when ‘it’ must have happened, if we judge by our records, and the latter are the
only data we have got. Thus, philologically speaking, ‘quantum tomography is
spacetime archaeology’.

More precisely, we have a system (call it ‘particle’), which is placed into an
appropriate experimental environment, and we are able to

• Repeat the experiment with the same initial conditions. In this way we get
the relative frequencies of the records.

• Vary the initial conditions of the system in question, leaving all the
environment (and records) the same. For each initial condition of the

5 From our vantage, ‘history could in principle repeat itself ’ (pun intended).
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system, we rerun the experiment. These first two steps give us the set of all
possible histories (coarse-grained trajectories) of the particle, as well as
their relative frequencies.

Another basic ingredient is the space of records. It is a space of data resulting from
controlled environment tampering with the system, and it is supposed to capture
its spatiotemporal properties. Records are interpreted as distinguishable events.
That is to say,

• We can distinguish them spatiotemporally. Although we do not know the
structure of the set of records that corresponds to events, we can identify
each record corresponding to a spacetime point as being different from
the others. Thus, while we know nothing a priori about their causal or
spatial (topological) ordering, events can be labelled so that we do not
have identification problems. For instance, we may consider photons of
different frequencies, each frequency mode coming from one point. In the
examples to follow this will become more transparent.

• We can vary each record corresponding to a particular event independently.
The variation is in some sense small—this may be effectuated by a ‘small
energy’ variation of the record. The latter is assumed to be small enough
not to affect the ‘topology’ of the records (i.e., neighborhoods in the set
of records remain the same). By ‘topology’ we mean a reticular structure
associated with appropriate coarse-graining of a region of the extended
configuration space we explore. The said variations give us the proximity
relations between events.

Experiments are carried out repeatedly and multiply. We label the runs by
initial conditions of the system, number of run and ‘positions’ of events.6 Each
run gives us a history, i.e., a sequence of causally related events. Note here that for
the same initial conditions of the system, the different histories group together to
form decoherent sets.

To conclude, from our experiments we get the following information:

1. The set of histories of the system associated with a fixed set of initial
conditions. We call this set of histories FIDUCIAL SET. Here we emphasize
that these correspond to coarse-grained ‘trajectories’.7 We define the set
of all histories to be C, while each history that is contained in it is denoted
by Ci . We therefore obtain the set C as well as the set P which is the set
of all possible events, or else the set of ‘spacetime’ points.8

6 By this we mean whether or not we varied one record corresponding to an event.
7 The inverted commas are added to the word ‘trajectories’, since the space on which they are defined

is not presupposed.
8 We remind here that we just speak of space points labelled by their Galilean time of occurrence.
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2. The relative frequencies of outcome of these histories depending on the
initial conditions. This is a function fj : C → [0, 1] which gives the (nor-
malized) relative frequency of histories for each particular initial condition
(corresponding to j th initial state of the system).

3. The change in the relative frequencies when one event is varied. This is
a function f

p

j : C → [0, 1] which is the new relative frequencies when
the event p has been varied. This will lead us to the proximity relation
between the points produced by the fiducial set of histories.

It is important to note that before we vary the records, we already have the
fiducial set of histories. It provides us the set on which the topology is imposed.

3. NON-RELATIVISTIC CASE

We reconstruct the effective topology of the extended configuration space.
But let us explain what we do in a bit more detail.

Effective versus ‘real’ topology. In our approach, we consider the effective
topology which we derive from our observations. That means the following.
Believing in Einstein’s theory, we posit that the physical processes take place in
spacetime, which is a topological space with certain ‘real’ topology. However,
there is no way for us to measure this ‘real’ topology exactly. That is why we are
speaking of effective topology—the topology of a model of configuration space
which accords with our experiments and fits their outcomes.

An important issue should be emphasized at this point. Suppose we have
derived a non-trivial topology for the configuration space—say for instance that
it has a defect, such as a hole. This indicates to us merely that we have non-
contractible loops, nothing more. Why these loops fail to be contractible—due
to the existence of a ‘real hole’, or because of, say, the presence of a potential
barrier—such a question is, as a matter of principle, not verifiable within our
approach.

As a consequence, we may admit transitions between 3-dimensional surfaces
of different number of components (with respect to the effective topology), without
regarding this as being unphysical.

The record space. As noted before, we rely solely on operationalistic means
to recover the effective topology. In turn, this means that we are able to control the
preparation of the initial state (see Section 2.4.) and then read out the observation
which is carried out by a specified device. The state space of this device we shall
call RECORD SPACE. Here it should be pointed out that we assume certain things
about this record space. In the case of the examples in Section 4, we specify the
main features of the interaction Hamiltonian of the system with the record. More
generally, we need only to assume that it captures the spatiotemporal properties
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of the system and therefore that it leaves records of events. Other records, outside
our record space, may exist and they specify other features of the particle, such
as its spin or electrical charge. If some records of the spatiotemporal properties
are elsewhere then we may end up with an incomplete topology reflecting the
classical indeterminacy mentioned earlier.

In closing this subsection we should also stress that since the device is anyway
a quantum system, reading out the records causes some loss of information about
the system in focus. Moreover, our choice of what to read out may also affect the
resulting topology, which is related to the aforementioned ontological quantum
indeterminacy.

3.1. Extended Configuration Space and Algebraic Considerations

We have a classical or quantum physical system, and we observe it for a
period of time (t0, t1). If M is the configuration space of the system, then the
Cartesian product

M = M × (t0, t1) (1)

is the extended configuration space. Moreover, we also take into account a more
general situation in which the topology of the configuration space M may change
in time and the extended configuration space M is no longer decomposable into
a product like (1).

Assume for a moment that the configuration space is at all times connected.
This is not a trivial statement, as we are talking of ‘effective extended configuration
space’ which in principle allows for transitions from connected to non-connected
subsets in different moments of time. By considering C, the set of all histories,
we may deduce the spatial slices as the subsets Si of points no pair of which is
contained in the same history (trajectory).

∀ p, q ∈ Si =⇒ ∃/ Cj ∈ C | p, q ∈ Cj (2)

Moreover, we regard ‘maximal’ slices as being the ‘time-slices’, i.e., any
extension of the spatial surface will move the subset outside the class of spatial
surfaces.

∃/ r ∈ P | r ∪ Si = Sj (3)

Note here that the relation indicating that two points do not belong to the
same history is transitive in the case we have only one component. It should also
be noted that we cannot determine the order of the slices merely from the set
of histories (i.e., without varying the records), neither can we deduce any other
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topological feature within each of these slices. Thankfully, the latter is not the
case in the relativistic situation since the upper bound in the speed of transmission
of information leads to a notion of proximity in each spatial surface. This will be
explored in a later publication Raptis et al.

Returning to the general case, in which transitions from connected to non-
connected spaces are allowed, the above procedure will produce ambiguities. Two
‘events’ could never be contained in the same history due to the fact that they are
in separate connected components and not because they ‘occur’ at the same time.
Trying then to form maximal subsets of P that are not contained pairwise to any
history, will not lead to a unique partitioning of the set of ‘spacetime’ points . This
is due to the fact that the property of two points not belonging to the same history
is not transitive anymore.

An example of ambiguity in partitioning:.

� � � � � �

� � � � � �

� � � � � �

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

c1 c2 c3 c4 c5 c6

We have a non-connected space. Say we have two boxes separated by a rigid
partition (e.g., an infinite potential barrier). The thick line in the graph represents
the partition. Apart from the obstructing partition, all histories are allowed which
do not contain points of the same ‘horizontal’ line corresponding to ‘same time’.
If the particle is in one time in point a1 at the left side of the partition, then it can
never be in any of the points on the right hand side of the partition, as e.g., point
b5. This, according to the previous definition of ‘time-slice’, means that a1 is in
the same slice with all the points on the right hand side of the partition no matter
which instant they are measured at.

The latter would lead to contradiction, since clearly a5 and b5 are not in
the same time-slice as there is a history joining them. If we stick to the proper
definition of ‘time-slice’, i.e., a maximal set of points pairwise not belonging to
the same history, we will end up having point a1 in one of the following ‘slices’:
(a1, a2, a3, a4, a5, a6), or (a1, a2, a3, b4, b5, b6), or, finally (a1, a2, a3, c4, c5, c6).
Any of these obey the definition of ‘spatial-slice’; therefore, just from the set
of histories we will end up with some ambiguity about what a spatial-slice or a
‘moment of time’ is.
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In general, this would not be a problem since we could consider each com-
ponent separately. But, in our effective set up we may have the two discon-
nected components becoming connected in the future. For example, the separa-
tion was made from ice and it melted (or from an unstable radioactive substance
which quickly decomposed!). An example of this situation will be examined
later.

We could therefore already make one non-trivial statement about the topology,
just by considering the set of histories. Namely, that if there is a unique way
of ‘foliating’ the points of the ‘spacetime’ into slices, the space is connected.
Furthermore, we will be able to determine the number of different components
of the ‘4-dimensional’ configuration space, and on top of this, the number of
components of one particular ‘spatial’ surface.

3.2. Extracting Connected Components

Having the set of decoherent histories, we can already extract some infor-
mation about the effective topology. Let us first show how connected components
are detected. In order to do this, recall that, given a connected component K of a
topological space X, the relation aσb := {a, b ∈ K} is an equivalence relation on
X.

4-dimensional connectedness. In our setup, we are given the relation aHb :=
{∃C ∈ C | a, b ∈ C}, which means that there exists a history containing both a and
b. The relation � is an equivalence, i.e., a symmetric, reflexive and transitive rela-
tion on X. However, the relation H is symmetric and reflexive, but not transitive.
Thus, the relation σ can be obtained as the transitive closure of the relation H .
In general, finding the transitive closure is an infinite operation; however, here
we deal with histories containing a finite number of events, hence the transitive
closure can be delimited in a finite number of steps.

A possible algorithm to find the transitive closure can be devised using
Boolean matrix machinery (Zapatrin, 1994). Namely, we can define the relation
H by its Boolean matrix (denote it by the same symbol H ), then σ—the transitive
closure of H—is obtained as a Boolean matrix power H |A| of H , where |A| is
the number of antichains. So, effectively the procedure of extracting connected
components goes as follows:

• Form the Boolean matrix of the relation H ‘to belong to the same history’

aHb := {∃C ∈ C | a, b ∈ C}
• Calculate its |E|’s power using Boolean arithmetics rather than ⊕ and ⊗:

σ = H |E|
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Recall that the Boolean operations has the following rules: 1 + 0 = 0 +
1 = 1 + 1 = 1, 0 + 0 = 0, 1 × 1 = 1, 1 × 0 = 0 × 1 = 0 × 0 = 0.

• The resulting matrix σ is always block-diagonal and the blocks of entries
are in 1–1 correspondence with the connected components of the space E

of events.

Components of a spatial surface. The procedure just described would account
for the number of components our ‘4-dimensional’ configuration space has. Note
that, since we speak of ‘effective configuration space’, we may as well have
transitions, in some particular time, from a number of components to another. It
would then be of interest to consider the number of components a spatial surface
has.

To this end we should point out that there is some ambiguity about what a
spatial surface is, thus this ambiguity will also be present in the considerations to
follow.

• We let Si be a spatial surface. ∀ p ∈ P\Si , we consider the following:
{Sp

i ⊂ Si | ∀ q ∈ S
p

i ∃ Cj ∈ C | p, q ∈ Cj }
• We will then end up with a family of subsets of Si , call it Ssi

. Note that
some of these will be identical, while others may contain others. We declare
them ‘open’.

• From this family we generate a topology by taking arbitrary unions and
finite intersections of the subsets. The resulting topology is denoted by
Tsi

.
• We then consider a sub-selection of the open subsets of Tsi

such that:
1. It covers all Si , i.e., their union is Si .
2. They are disjoint.
3. They are ‘minimal’: that is, they contain the smallest of the subsets

in the family Tsi
.

This is a disjoint open covering of Si that is also a basis for the
topology Tsi

.
• Finally, each of these subsets corresponds to one component of the spatial

surface Si .

To clarify things, and without wishing to repeat ourselves, we describe the above in
words. We chose the surface in question. Then, for each point in space we see which
part of the surface is causally connected to it. Then we pick the smallest family
of subsets of the surface that covers the surface. Since the separate components
do not overlap, we need to secure that this family is also disjoint. That is why
we need to generate a family bigger than Ssi

, namely, Tsi
, while from this we are

guaranteed to have a basis that consists of the relevant components, which basis
would a fortiori be a disjoint covering.
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Illustrative example of recovering the components of a spatial surface:.

� � � � � �

� � � � � �

� � � � � �

� � � � � �

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

c1 c2 c3 c4 c5 c6

d1 d2 d3 d4 d5 d6

Here the space is connected when seen 4-dimensionally. The partitions that
exist forbid for example a history containing a5 and b3 (the lower one), or a5

and c1 (the higher partition). Note that even without the ‘d-column’, the space is
connected when viewed ‘4-dimensionally’, as the ‘transitive closure’ of any point
is the set itself.

Now we follow the steps described above. We pick the spatial slice that
corresponds to the b-horizontal line (b1, b2, . . . , b6), and we are looking for its
components.

First we consider the set Ssi
, which in this case is the set con-

taining the following subsets: {(b1, b2), (b1, b2, b3, b4), (b3, b4, b5, b6), (b5, b6),
(b1, b2, b3, b4, b5, b6)}. Note that the subset (b3, b4) does not belong to Ssi

.
The result we would like to have is that there are three components, namely,
{(b1, b2), (b3, b4), (b5, b6)}. To obtain this, we have to follow Section 3.2. and
extend Ssi

to Tsi
, which is the topology induced by Ssi

if we consider unions and
intersections. In the latter, the subset (b3, b4) is also included as it is the intersection
of (b1, b2, b3, b4) and (b3, b4, b5, b6).

We then need to pick a sub-selection of the elements of Tsi
that is disjoint

and covers the surface (i.e., the horizontal b). There are two possible choices:
either {(b1, b2), (b3, b4), (b5, b6)}, or {(b1, b2, b3, b4, b5, b6)}. The second is not
‘minimal’, i.e., it does not contain the smallest sets and therefore it is not a basis
for the topology Tsi

. Finally, we are left with {(b1, b2), (b3, b4), (b5, b6)}, which is
the desired result.

A final note just to mention that the above discussion is liable to ambiguities
that come from the fact that there is not a unique definition of spatial surface. In-
stead of the b-horizontal as a surface, we could have taken as spatial surface for ex-
ample the subset {(c1, c2, b3, b4, b5, b6)}, and we would end up with similar results.
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3.3. Reconstruction of Topology—Statistical Approach

As mentioned earlier, different decohering sets of histories may lead us to
different effective topologies. It follows that the effective topology is a result of our
measurements. We could claim that our system is in a superposition of different
effective ‘spacetimes’9 and our choice of measurement causes a ‘reduction’ to
one particular (or to a particular subspace of all the possible) ‘spacetime’. In the
description above we carry out a measurement in record space on the ‘basis’ that
is related with spacetime points, i.e., events. If this assumption is not satisfied, the
actual choice of our measurements would affect the resulting topology. It should be
pointed out here that this is the generic case, since we cannot have full knowledge
about whether or not our records capture only configuration space properties and
not, possibly incompatible, momentum space as well. On the other hand, if our
measurements are sufficiently coarse, we could have compatible ‘position’ and
‘momentum’ measurements.

Now we are in a position to address how to recover topology assuming that
we can vary slightly one event independently from the others, and repeat the runs
of the experiment. The result of such variations will be certain changes of the
relative frequencies, that is why we call this process statistical reconstruction of
topology. This procedure fixes the ambiguities about the ‘time-slices’ that existed
due to the non-connected spatial surfaces, as well as the order of these slices.

• We have the relative frequencies, fj (Ci) of each history Ci with initial
condition‘j ’.

• We vary slightly one event say event p ∈ P and repeat the procedure to
get the new relative frequencies of histories f

p

j (Ci). It is important to note
that, provided the variation is small, the set of histories is the same and
only their relative frequencies change. Therefore, all the considerations
that were already made from the mere set of histories still apply galore.

By observing which histories have changed their frequencies com-
pared to the undisturbed event case, we can deduce a few things—for
starters, some notion of closeness (or proximity). The histories whose fre-
quencies are significantly affected by the perturbation are in some sense
‘close’.

• We consider each initial condition separately.10 For each initial condition
we see the probabilities of which histories alter significantly.

9 Here we still assume that we are in the non-relativistic regime.
10 This to avoid problems related with the following. Assume that we vary a point a in a way that it has

the same distance with one neighboring point b. Then the overall probability of the b due to symmetry
will be invariant, but depending on which is the initial condition of the system the probabilities of
some histories will increase while other will decrease with a net probability unchanged. In this way
we would fail to recognize b as a neighbor of a.
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• After we vary the ‘event’, we repeat the experiment exactly with same
initial condition as before and then, by considering the change in relative
frequency of events (not of histories), we can deduce which events are
neighbors (call them j -neighbors, whereby the label ‘j ’ stands for the
initial condition we consider). We repeat this for all possible initial condi-
tions. We then consider the union of all these j -neighborhoods to get the
total neighborhood of the point we varied.

In other words we take a small positive number ε � 1. We define
another function, the difference function, as follows:

δ
p

j : C → [0, 1] :| fj (Ci) − f
p

j (Ci) | (4)

We then consider all the points belonging to the histories Ci ∈ C that
δ

p

j (Ci) > ε. We name them j -neighbors of p. So we have:

q ∈ N
p

j =⇒ ∃ q ∈ Ci, Ci ∈ C | δ
p

j (Ci) > ε (5)

We then consider different initial conditions ‘j ’ and we group all the
neighbors together to form the neighbors of ‘p’ , Np.

q ∈ Np =⇒ ∃ j | q ∈ N
p

j (6)

• We already know which of these neighbors are (definitely) not in the same
time-slice (:those that both belong to at least one history), and we can
coin them ‘temporal neighbors’. Events being in different path-connected
components will never affect each other. Note here that the neighbors that
will be affected, and are definitely not in the same time, are only to the
future of the event in question. Thus, properly speaking, we should talk
about ‘future temporal neighbors’. With these in hand, we may get the
order of the histories.11

• Then we mark the events that are neighbors, but not temporal neighbors,
as ‘spatial-neighbors’, and use them to define proximity in the ‘time-slice’
in focus.

So we define spatial neighborhood of ‘p’ to be:

SNp | q ∈ [Np \ ∪iCi] , p ∈ Ci ∀ i (7)

• We repeat this procedure varying slightly one by one all the ‘events’.
• From the proximity we deduce the topology of each time slice in the usual

way—e.g., as it is done in metric spaces.
• We will have obtained the topology of each spatial components. We

can then choose an arbitrary partitioning of these slices to get the total

11 Note that since we get a direction from the fact that only the ‘future’ neighbors are affected, helps us
recover the order with no doubt about the overall direction.
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4-dimensional case. We then check that we do not have contradiction.This
contradiction could be due to, for example, some event being affected by
a change in an event to its future rather than to its past (:‘advanced’ and
‘retarded’ contradiction, respectively).If a contradiction arises, we pick
another ‘partitioning’, so on and so forth, until the correct one is obtained.

• By patching all the slices together, we recover the topology of our ‘space-
time’, or more precisely, of its reticular substitute .

Alternatively, we may consider the closest neighbors to define a cover of
each time-slice, and then find the finitary substitute of the underlying continuous
topology. To find only the closest neighbors, we need to ‘tune’ the parameter ‘ε’
to be sufficiently big so that it gives only the number of closest neighbors we want
(4 to get a 3-dimensional space in the triangulations scheme). Along these lines,
we first get a prebase from which the topology is unambiguously reconstructed.
We should note here that the above construction makes ‘heavy’ use of the relative
frequencies, not only of the set of histories. It effectively uses the former to define
neighborhoods.

4. TOY MODELS

4.1. Double-Slit Experiment

We consider a discrete version of the registration screen. This means that
our data will be a discrete distribution of registered events, each ‘column’ being
discretely labelled. We consider the case that we do not detect which slit the
particle passes through, as well as the case that we do. In both cases we have
always the same initial conditions—a particle is emitted far away from a barrier
bearing two holes. Note also that the particle in question is assumed not to be a
photon, so that it can be detected on the slit without being absorbed.

Case I: Not detected on the slit. The particle passes through the slit. Then it
is absorbed by a film so that we can identify different events by measuring the
position of the excited grain on the film. Note that we need only distinguish the
different events and not their actual position. So, somebody could have cut the film
and glued it back with different order (but the same for all the repetitions). The
correspondence between this gedanken-experimental scenario and our theoretical
scenario above is the following:

• single experiment—emitting one particle and registering it
• the record space—the real line (position-loci of registered events)
• a particular history—an event

To recover the configuration space, we (a) assume continuity of the distribu-
tion, and (b) move slightly one point of registration on the film. By observing the
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probabilities of the events that are significantly altered, we define the neighborhood
of this ‘point’ (:proximity neighborhood).

We recover several segments of a line representing the configuration space.
The fact that it is not the whole real line that is being recovered, is due to the fact
that there exist dark fringes, i.e., regions where the particle is never detected.

Case II: Detected on the slit. The particle passes through the slit, and a photon,
whose frequency depends on which slit the particle passes through, is emitted. This
happens because we have an oscillator of different frequency on each slit, and when
a particle passes, the oscillator increases its energy level. Then, upon relaxing back
to its ground state, it emits a photon. Then the particle is absorbed by the discrete
screen. The correspondence between this gedanken-experimental scenario and our
theoretical scenario above is the following:

• single experiment—emitting one particle, and subsequently registering it
as well as the photon carrying information about which slit the particle
passed.

• the record space—the real line (position-loci of registered events) and
the detector of the photon (or the oscillators). Note here that we can
distinguish all events from each other, but not know anything else about
their topological structure.

• a particular history—a photon with frequency depending on which slit the
particle passes through, followed by a position on the discrete screen line.

To recover the configuration space, we (a) assume continuity of the distri-
bution, and (b) we move slightly one point of registration on the film, or one of
the oscillators. As usual, we recover neighborhoods by small variations of the
established ‘records’.

What is eventually recovered. Two points separated from one another, and at
a later time12 a segment of straight line (actually a syncopated version of it). Note
that the line does not decay into disjoint segments, as we have no interference and
therefore there are no ‘dark fringes’.

4.2. Bath of Sensors

Here we consider a thought experiment that better illustrates the foregoing
ideas. We have a closed box, and in it there are many (say, n) different oscillators,
all of different frequency. We require this to be able to distinguish our ‘points’,
but note that we do not know anything about their structure. We inject a particle
into the box that has the following property: when it is sufficiently close to one

12 The order of the events is recovered, due to the fact that varying events to the past and only affects
the relative frequencies of the future and NOT visa-versa.
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oscillator, the oscillator increases its energy level. At the final time when we
measure things, the oscillators will relax to their ground state, emitting one photon
of the same frequency as the oscillator that had been excited.

The only other thing we need to assume is that somehow the signals (photons
records) emitted from each oscillator can be distinguished from those emitted by
the same oscillator at a different time (we need that to have spatio-temporal labels).
This may be done by having, for example, a moving film around the box, and earlier
or later signals from the same oscillator would be identified by different positions
on the film. The fact that each oscillator may have significantly different ‘half-
life’ before it relaxes, means that signals from different times may be confused.
The important point here is that we only care about the order of photons coming
from the same spatial event, since others can be distinguished by their different
frequency. Finally, we will end up with a set of different records corresponding to
different events, and all of them will be spatio-temporally distinguishable.

We then infuse the particle into the box, with different momentum and from
different points. Each repetition (with the same initial condition) gives one possible
history. We do it many times for each initial setup, and we record the results in
our data-sheets (experimental protocols). After this is accomplished, we obtain
the set of possible histories and their relative frequencies. This is sufficient, in our
non-relativistic case, for deriving the number of different components each spatial
slice has.

We may then vary slightly each oscillator separately, and repeat the experi-
ment. By this, we will obtain information needed to recover the topology . In this
setting we have the following correspondences with our theoretical scheme:

• single experiment—emitting the particle in the box with some given initial
condition, and with a specific setup of the oscillators, and then record at the
final time the photons having been emitted (maybe read them out directly
from the moving film).

• the record space—photons of different frequency on different positions on
the registering film.

• a particular history—a collection of photons of different frequencies (pos-
sibly also of different positions on the film, if a moving film is required for
distinguishing events in time).

To recover the configuration space, we do the following:
We assume continuity of the distribution and move slightly one oscillator at

a particular ‘time’. By noting the probabilities of which events are significantly
altered, we define the neighborhood of this ‘point’. Here we need to take into
account the union of all the neighborhoods related to all the possible initial con-
ditions. We then specify the ‘temporal’ and ‘spatial’ neighborhoods. We repeat
this procedure varying slightly all the ‘events’ one by one. Using the proximity
relation, we deduce the topology of this slice, as was described in Section 3.3.
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By patching all the slices together, we recover the topology of our ‘spacetime’.

What is eventually recovered.. We get the effective topology of the interior
of the box. This includes other objects that were not known to be there, as well
as their time evolution. So if for example there was a cube of ice in the box that
melted, this will be represented by a cubic hole in the configuration space that
gradually changed shape to become flat.

5. CONCLUSIONS

Let us summarize what we have done. We have a laboratory in which we
explore a physical system whose configuration space is unknown. We are able to
run the experiments sufficiently many times, either by leaving the initial conditions
unchanged, or by varying them. We also have another physical system, whose
configuration space is coined RECORD SPACE. As a result of each run of the
experiment, the record space acquires a state (a quantum state, in general). In each
run, we perform a measurement over the record space. Which measurement in
particular, this is a matter of our choice.

After multiple runs, we have a set of protocols (data-sheets). Each protocol
tells us which events occurred within a particular experiment. This set of events is
referred to as a history. When the initial conditions remain unchanged, the arising
set of histories is treated as a decohering set.

Initially, as a result of our observations, we have histories and, in addition,
their relative frequencies. This primary set of histories we call FIDUCIAL SET.

From the fiducial set, we deduce the number of components of our ‘spacetime’
(extended configuration space) as well as the number of components in each
‘spatial’ surface (i.e. moment of time).

We then allow for variations of the records. This yields new histories which
make it possible to deduce proximity on the fiducial set and hence the topological
properties of the ‘spacetime’.

As a result, we reconstruct the effective topology of the ‘spacetime’ region
involved in our observations. ‘Effective’ means that we can say nothing about the
‘true’ topology, and that all our statements are consequences of our observations.
The working definition of configuration space that we employ is the following.
CONFIGURATION SPACE is the space of all possible configurations of our system.

The topology we recover—the ‘effective’ one—may include holes and other
topological features that result from existing ‘potentials’ that we do not vary.
What could be referred to as the ‘true’ topology would be something that takes
into account only the background manifold. In this sense it would be like saying
that we may vary not only the initial state of the system in question, but the initial
state of any potential except the gravitational (which is supposed to account for
the ‘geometry’ of the background manifold).
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We emphasize once again that we recover histories operationalistically. The
record space is the only source of information we possess about the system we
explore. The effective topology is then regarded as the ‘best possible’ (:as realistic,
or as pragmatic a) picture of the actual configuration space of the system in focus
as one can acquire from her ‘experimental intercourse’ with it.

Last but not least, some loose, anticipatory connections with the forthcoming
paper Raptis et al. are due here. In the latter, we develop the relativistic version of
our ‘topology-from-inverse histories’ theoretical scheme. This essentially means
that, due to a physical upper bound in the transmission/propagation of (material)
signals, one is forced to focus more on recovering the causal topology of spacetime
from ‘inverse causal histories’, rather than on just recovering the topology of
‘frozen, absolute, fat spatial slices’ (i.e., merely of ‘space’) as we did presently.
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